

40 Year VFB Anniversary Symposium

Current Flow Battery Research at UNSW

A/Prof Chris Menictas Mechanical and Manufacturing Engineering Chemical Engineering Chemical Engineering

Prof Jie Bao Em. Prof Maria Skyllas-Kazacos

Partners and Networks

Overview

- 團 Electrolyte studies
- $\sum_{i=1}^{n}$ Lab scale cells
- $\bigcircled{\mathbb{Q}}$ Scale up
- Dynamic Modelling \mathbf{w}
- Monitoring and Control**Age**

Electrolyte study focus areas

Operational stability

Long term stability

- Maintain capacity performance
- **Effect of impurities**
- Additives for improved performance
- **Charging limits**
- Hydrogen suppression
- Reduce capacity fade

Lab scale cells

- Active cell area 25cm²
- Conducting plastic electrode advances
- Membrane evaluation
- Design improvements
- Lower resistance and pressure drop
- Higher overall improved performance and stability

Lab scale cells

- Conducting plastic advances
- Membrane evaluation
- Design improvements
- Lower resistance and pressure drop
- Higher overall improved performance and stability

Lab scale cells

Performance

Dry cell resistivity ($Ω$ cm²) (excludes membrane)

Designation

Scale up - 1000cm2 active area

Similar high performance as small-scale cell achieved during scale up

Vanadium Oxygen Fuel Cell

- VOFCs demonstrated at UNSW in mid 90s single and 5 cell stacks.
- Positive VFB half cell replaced by the oxygen reduction reaction
- Up to 4 times the energy density of the conventional VFB
- Currently 85% capacity utilization has been achieved
- Current work focusing on:
	- Cell design and gas distribution
	- **Membranes**
	- **Catalysts**
	- Recharging

9

Numerical Modelling for VFB and other chemistries (eg organics and Iron flow)

Cell level modelling

Numerical Modelling of cell designs and for VFB and other chemistries (eg organics and Iron flow)

Stack level modelling

Current Research @ UNSW

Modelling and Control of Vanadium Flow Batteries

Dynamic Modelling of VFBs

For online monitoring and control purposes

- Captures key dynamics of flow batteries
- Dynamic plug flow models (Li et al 2015)
- Modelling the reaction/side reactions and ion diffusion during charging/discharging and standby (selfdischarge) (Tang et al 2011, 2012)
- Online SOC imbalance monitoring (Li et al 2021)
	- A procedure for membrane permeability estimation
- Shunt current (Tang et al 2013, Skyllas-Kazacos et al 2016)
- Battery impedance during charging / discharging operations (Li et al 2018) – Frequency Control Ancillary Services
- Electrical safety analysis (Shu et al 2024)

Dynamic Thermal Modelling of VFBs

- During charging/discharging and standby (Tang et al 2012)
- **Multi-cell stacks (Yan et al 2016a, 2016b)**
- Containerized VFBs (Shu et al 2023a, 2023b)
	- Design options for different operating environments
		- Passive / active cooling & heating / insulation

Real-time Control of VFB

Optimal Control of Flow Batteries

Intermittency of renewable energy sources - variable battery input and output power

- Applications of modern control theory
- \blacksquare Model uncertainties, uncertain disturbances \rightarrow modelbased feedback control
- Dynamic VFB model: concentration overpotential; capacity loss; electrolyte imbalance; avoid gassing etc.
- Real-time control of battery operations for improved efficiency (Tang 2014; Li et al 2016);
	- Gain Scheduling (Li et al 2016, 2017);
	- Linear Parameter Varying framework (McCloy et al 2022)

Real-time Control of VFB

Real-time Optimal Control to Optimize Economic Benefit of Battery Operations

- **Based on SOC, predicted future energy** generation/ consumption /electricity price, etc.
- **Power arbitrage**
	- Real-time optimal control (e.g., charging /discharging current; flow rate) to maximize economic objectives
	- Economic model predictive control real-time optimization over receding horizons to deal with errors of price prediction (Shail et al 2024)

Battery Systems Integration and Coordination

Coordination and control of geographically distributed battery energy storage systems

- Distributed control (using autonomous controllers with communications) to allow large scale implementation
- Optimizes the economic benefit of each user (owners of battery systems)
- Controllers are coordinated to reduce the dynamics (fluctuations) of the power flows in a microgrid – improving grid stability
- **Taking into account predicted energy consumption,** renewable energy generation and state of charge etc.

Distributed Energy Storage Systems

- Distributed economic model predictive control
- Power flow control for grid operations
- Dissipativity theory-based control algorithms for grid stability) (Zhang et al 2016, 2017a, 2017b, Wang et al 2017, 2018)
- Based on the dynamic VFB model
- Integrated with industrial scale demand-side power management (Wong et al 2023)
- Dealing with different energy storage systems and loads in the network

Acknowledgements

Trailblazer

Recycling & Clean Energy

Thank you!**RioTinto**

Australian Government Australian Research Council

