The early Vanadium Redox Flow Battery development projects and Commercialization

by

Kanji SATO

SEE-I Technology Institute and HighChem Company. Ltd and LE SYSTEM Inc.

History of V Battery (VRF battery)Development at Kashima-kita Electric Power Corporation

Targets and operating results of 200kW battery

Items	Targets	Results
Output power	200kW-4Hr	Achievement
Current Density	80mA/cm ²	80mA/cm ²
Current Efficiency	95%	93%
Power Efficiency	80%	80%
Voltage Efficiency	84%	86%
Number of charges/discharges	1500 cycle	650 cycle
Mode of operation	unmanned, continuous operation	Achievement

Early commercialization and field trials at Sumitomo Electric Industries (SEI)

Sumitomo Electric Industries's RF Battery Development Program

Year	85 - 90	91	92	93	94	95	96	97	98	99	00	01	
Cell Stack	10kW												
Module	Fe-C	Cr	60	kW									
Scale up					V-V	7	45	0kV	V				
Field Test						Adv D	vanc esigi	ed n	20k	w~	-MV	V	
Sales											S	tart	

Supply Records of Sumitomo Electric Industries

Place	Applications	Specifications	Delivery
Office building Load leveling (Demonstration)		100kW x 8h	2000/02
Wind power station	Stabilization of wind turbine output (Field test)	170kW x 6h	2000/12
Semi-conductor factory	 1) Voltage sag protection 2) Load leveling 	1) 3000kW x 1.5sec. 2) 1500kW x 1h	2001/02
Golf course Load leveling (Photovoltaic hybrid system		30kW x 8h	2001/04
South Africa	Load leveling (Field Test)	250kW x 2h	2001/05
University Load leveling		500kW x 10h	2001/07
Italy	Load leveling (Field Test)	42kW x 2h	2001/12

Application to Semi-Conductor Factory

Specifications			2001)
Function	Purpose	Output	
(1) Voltage Sag Protection	Protection of Important Load	3MW x 1.5sec	
(2)Load leveling	Reduction of Electricity Charge	1.5MW x 1hour	Everyday

Records of voltage-sag compensated by VRB system

Application of RF Battery to Office Building

Application to University

<Specifications>

Load leveling 500kW × 10h

<Schedule>

Operation → **July 2001**

Application to Wind Power Station (NEDO Project)

Place : Tomari Wind Hills of Hokkaido Electric Power Co.,Inc. Wind Turbine : 275 kW VRB : 170 kW-6h

Results for Stabilization of Wind Turbine Output ·2001/04/03

VRB for CESI (Italy)

- <Purpose> Load leveling
- <Specification> •42kW x 2h
- <Operation> •Dec. 2001

(Inside the house)

(2F Control Room)

HighChem Company, Ltd.

A Chemical Material Trading & Manufacturing Company

Established : April 8, 1998 Number of Employees : 603 (consolidate as of Jan. 2024) Locations : Japan (HQ, 5 bases, 2 Labs.), China (12 bases, 2 Labs.), USA (1 base), Europe (1 base) Consolidated Sales of 2023 : 123,986 Mil. Yen (1,231 Mil. AUD)

HighChem's Battery Business Fields

Trading of Battery Raw Materials / Production of Solvents Trading of Battery Systems, Battery Cells and Modules Trading of Battery Manufacturing Machines / Licensing of Production Technology (Under development) V-RFB Manufacturing of Cells, Electrolyte, Battery Systems

HighChem's Battery R&D

Battery Material R&D Center Established : August 2023 V-RFB R&D team : 6 members (4 PhDs) including; Dr. Kenzo Hanawa, General Manager (former Showa Denko V-RFB Leader) **Dr. Kanji Sato**, Special Technical Advisor (Pioneer of V-RFB)

Blade Battery Cells

6 MWh Container

Confidential

HiahChem

HighChem's V-RFB development

V-RFB Development target in HighChem

- 1. Low resistivity, high output V-RFB cells stacks
- 2. Vanadium electrolyte production / Vanadium extraction technology
- ightarrow To be on market by 2026

High Performance Cell Technology

Cell Production Technology

Confidential

HighChem

Laboratory cell stack 100 cm² x 3 cells

(0	(Charging : 200 mA/cm ²)		
Output current density (mA/cm²)	Energy Efficiency		
200	85%		
400	80%		
600	74%		
800	67%		

Resistivity : $0.43 \ \Omega \text{cm}^2 @ 45^{\circ}\text{C}$

Product prototype cell stack 5 kW (442 cm² x 40 cells)

MPANY PROFILE

Battery cell design

VRFB operational

production

system

LE System Company Profile

Company name	LE System Co., Ltd	
Establishment	October 13, 2023 (Date of business succession: December 1, 2023)	●株式会社I Fシステハ
Business activities	RnD, manufacturing, and sales of electric power storage devices, etc.	
Location	NT Building, 1-47-1 Oi, Shinagawa-ku, Tokyo, Japan	
Stated capital	JPY 30,000,000	TECHNOLOGY
Representative Director	Nagayoshi Ho	Vanadium recoveryVRFB electrolyte

- ✓ RS Technologies has established a new subsidiary and acquired the entire business of the former LE System starting from December 15th.
- ✓ The origin of the technology of the former LE System can be traced back to the research on "energy conservation and non-fossil energy" by NEDO¹ and JST² in the 1970s and 1980s, and it has received support including investment from INCJ³.
- ✓ The Tsukuba Technical Center was founded in 2013 as a centre for research and development. In 2021, the largest electrolyte production facility for VRFB in Japan was built in Namie, Fukushima.

1.NEDO (New Energy and Industrial Technology Development Organization、新エネルギー・産業技術開発機構) 2.JST (Japan Science and Technology Agency 、科学技術振興機構) 3.INCJ (Innovation Network Corporation of Japan、産業革新機構)

Namie Plant

ERENCE) NAMIE PLANT

- In 2021, the electrolyte plant with 5,000 m³/year production capacity was completed
- In December 2022, the plant successfully obtained certification by complying with Sumitomo Electric's electrolyte requirements and production management system.
- Our current plans involve setting up a manufacturing facility in China that can produce 100,000 m³/year.

Copyright © LE SYSTEM CO., Ltd. All Rights Reserved.

Summary

- Kashima-Kita Electric Power corporation signed a technical guidance agreement with the Ministry of International Trade and Industry's ETL in 1990 to develop batteries using by-products of thermal power plants, and conducted joint research with the University of NSW patent license in 1992 and 1993.
- Kashima-kita developed a technology to produce vanadium electrolytes from vanadium and sulfuric acid, which are by-products of thermal power plants, and succeeded in the first demonstration operation of a 200 kW-4 hour VRF battery in 1997.
- Sumitomo Electric Industries, Ltd., the company to which the technology was transferred, examined the commercialization of early VRF batteries.
- Field tests were conducted for road leveling of commercial buildings and universities, adjustment of output fluctuations of wind power and solar power generation, and instantaneous shutdown of semiconductor factories, and the usefulness of VRF batteries was verified.

